Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38373589

RESUMO

Vertebrates elevate heart rate when metabolism increases during digestion. Part of this tachycardia is due to a non-adrenergic-non-cholinergic (NANC) stimulation of the cardiac pacemaker, and it has been suggested these NANC factors are circulating hormones that are released from either gastrointestinal or endocrine glands. The NANC stimulation is particularly pronounced in species with large metabolic responses to digestion, such as reptiles. To investigate the possibility that the pancreas may release hormones that exert positive chronotropic effects on the digesting Burmese python heart, a species with very large postprandial changes in heart rate and oxygen uptake, we evaluate how pancreatectomy affects postprandial heart rate before and after autonomic blockade of the muscarinic and the beta-adrenergic receptors. We also measured the rates of oxygen consumption and evaluated the short-term control of the heart using the spectral analysis of heart rate variability and the baroreflex sequence method. Digestion caused the ubiquitous tachycardia, but the intrinsic heart rate (revealed after the combination of atropine and propranolol) was not affected by pancreatectomy and therefore hormones, such as glucagon and insulin, do not appear to contribute to the regulation of heart rate during digestion in Burmese pythons.


Assuntos
Boidae , Animais , Frequência Cardíaca/fisiologia , Boidae/fisiologia , Taquicardia , Pâncreas , Hormônios/metabolismo
2.
J Muscle Res Cell Motil ; 44(1): 25-36, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-37014477

RESUMO

Contractile function of skeletal muscle relies on the ability of muscle fibers to trigger and propagate action potentials (APs). These electrical signals are created by transmembrane ion transport through ion channels and membrane transporter systems. In this regard, the Cl- ion channel 1 (ClC-1) and the Na+/K--ATPase (NKA) are central for maintaining ion homeostasis across the sarcolemma during intense contractile activity. Therefore, this randomized controlled trial aimed to investigate the changes in ClC-1 and specific NKA subunit isoform expression in response to six weeks (18 training sessions) of high-load resistance exercise (HLRE) and low-load blood flow restricted resistance exercise (BFRRE), respectively. HLRE was conducted as 4 sets of 12 repetitions of knee extensions performed at 70% of 1 repetition maximum (RM), while BFRRE was conducted as 4 sets of knee extensions at 30% of 1RM performed to volitional fatigue. Furthermore, the potential associations between protein expression and contractile performance were investigated. We show that muscle ClC-1 abundance was not affected by either exercise modality, whereas NKA subunit isoforms [Formula: see text]2 and [Formula: see text]1 increased equally by appx. 80-90% with BFRRE (p < 0.05) and 70-80% with HLRE (p < 0.05). No differential impact between exercise modalities was observed. At baseline, ClC-1 protein expression correlated inversely with dynamic knee extensor strength (r=-0.365, p = 0.04), whereas no correlation was observed between NKA subunit content and contractile performance at baseline. However, training-induced changes in NKA [Formula: see text]2 subunit (r = 0.603, p < 0.01) and [Formula: see text]1 subunit (r = 0.453, p < 0.05) correlated with exercise-induced changes in maximal voluntary contraction. These results suggest that the initial adaptation to resistance-based exercise does not involve changes in ClC-1 abundance in untrained skeletal muscle, and that increased content of NKA subunits may facilitate increases in maximal force production.


Assuntos
Músculo Esquelético , Treinamento de Força , Humanos , Músculo Esquelético/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Exercício Físico/fisiologia , Contração Muscular , Isoformas de Proteínas/metabolismo , Treinamento de Força/métodos
3.
Int J Mol Sci ; 23(6)2022 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35328755

RESUMO

Ischemic conditioning and exercise have been suggested for protecting against brain ischemia-reperfusion injury. However, the endogenous protective mechanisms stimulated by these interventions remain unclear. Here, in a comprehensive translational study, we investigated the protective role of extracellular vesicles (EVs) released after remote ischemic conditioning (RIC), blood flow restricted resistance exercise (BFRRE), or high-load resistance exercise (HLRE). Blood samples were collected from human participants before and at serial time points after intervention. RIC and BFRRE plasma EVs released early after stimulation improved viability of endothelial cells subjected to oxygen-glucose deprivation. Furthermore, post-RIC EVs accumulated in the ischemic area of a stroke mouse model, and a mean decrease in infarct volume was observed for post-RIC EVs, although not reaching statistical significance. Thus, circulating EVs induced by RIC and BFRRE can mediate protection, but the in vivo and translational effects of conditioned EVs require further experimental verification.


Assuntos
Vesículas Extracelulares , Traumatismo por Reperfusão , Animais , Modelos Animais de Doenças , Células Endoteliais , Humanos , Isquemia , Camundongos
4.
Artigo em Inglês | MEDLINE | ID: mdl-35351650

RESUMO

Resistance exercise and protein ingestion stimulate muscle protein synthesis in mammals and the combination of both stimuli exert an additive effect. However, mechanisms regulating muscle mass may be different in ectothermic vertebrates because these animals are adapted to low energy consumption, short bouts of physical activity, and prolonged periods of inactivity. Here, we investigated the effects of administration of leucine and simulated resistance exercise induced by electrical stimulation (ES) on protein synthesis rate in isolated extensor digitorum longus muscle from golden geckos (Gekko badenii). Muscles were placed in Krebs-Ringer buffer equilibrated with O2 (97%) and CO2 (3%) at 30 °C. One muscle from each animal was subjected to one of three interventions: 1) administration of leucine (0.5 mM) at rest, 2) isometric contractions evoked by ES, or 3) a combination of contractions and leucine, while the contralateral muscle served as untreated control. The rate of protein synthesis was measured through pyromycin-labeling. Administration of leucine led to a 2.75 (±1.88)-fold rise in protein synthesis rate in inactive muscles, whereas isometric contractions had no effect (0.67 ± 0.37-fold). The combination of isometric contractions and leucine did not affect protein synthesis rate (1.02 ± 0.34-fold), suggesting that muscle contractions attenuated the positive influence of leucine. Our study identifies leucine as a potent positive regulator of muscle protein synthesis in golden geckos, but also demonstrates that muscle contraction is not. More studies should be conducted in other taxonomic groups of ectothermic vertebrates to identify whether this is a general pattern.


Assuntos
Lagartos , Animais , Leucina/metabolismo , Leucina/farmacologia , Mamíferos , Contração Muscular/fisiologia , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-33400953

RESUMO

Many snakes can subdue and swallow very large prey after many months of fasting. The functional capacity and the mass of the gastrointestinal organs regress during fasting, but are quickly restored upon feeding. This phenotypic flexibility appears to be energetically inexpensive, and represents a key adaptation that enables snakes to match digestive performance without compromising bodily energy stores prior to nutrient absorption. The reorganization of the intestines resembles the unfolding of an accordion where the individual enterocytes expand, primarily in response to luminal presence of nutrients. The very large rise in postprandial metabolism (specific dynamic action), where the rate of oxygen consumption can increase four- to six-fold, is likely due to a global rise in protein synthesis in all tissues. The rise in oxygen consumption is sustained by a pronounced tachycardia that, in part, is caused by un-identified humoral factor(s) with positive chronotropic effects, and a rise in stroke volume, where venous return may be augmented by a rise in venous tone. The immediate stimulation of gastric acid secretion causes a metabolic alkalosis (the alkaline tide), but pH remains unchanged due to a rise in arterial PCO2 caused by a proportionally smaller elevation of ventilation than for CO2 production (i.e., hypoventilation). Given the magnitude of the physiological responses to feast and famine, snakes provide a unique animal model to study regulation of organ function in response to rapid transitions in demands as well as an avenue to study a multitude of functional interactions among organ systems.


Assuntos
Boidae/fisiologia , Digestão/fisiologia , Metabolismo , Consumo de Oxigênio , Alcalose , Animais , Comportamento Alimentar/fisiologia , Ácido Gástrico/metabolismo , Trato Gastrointestinal/metabolismo , Frequência Cardíaca , Concentração de Íons de Hidrogênio , Hipoventilação , Modelos Biológicos , Período Pós-Prandial/fisiologia , Respiração , Volume Sistólico
6.
Acta Physiol (Oxf) ; 231(1): e13540, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32687678

RESUMO

AIM: Loading-induced tension development is often assumed to constitute an independent cue to initiate muscle protein synthesis following resistance exercise. However, with traditional physiological models of resistance exercise, changes in loading-induced tension development also reflect changes in neural activation patterns, and direct evidence for a mechanosensitive mechanism is therefore limited. Here, we sought to examine the importance of excitation and tension development per se on initiation of signalling, gene transcription and protein synthesis in rat skeletal muscle. METHODS: Isolated rat extensor digitorum longus muscles were allocated to the following interventions: (a) Excitation-induced eccentric contractions (ECC); (b) Passive stretching without excitation (PAS); (c) Excitation with inhibition of contractions (STIM + IMA ) and; (d) Excitation in combination with both inhibition of contractions and PAS (STIM + IMA  + PAS). Assessment of transcriptional and translational signalling, gene transcription and acute muscle protein synthesis was compared in stimulated vs contra-lateral non-stimulated control muscle. RESULTS: Protein synthesis increased solely in muscles subjected to a combination of excitation and tension development (ECC and STIM + IMA  + PAS). The same pattern was true for p38 mitogen-activated protein kinase signalling for gene transcription as well as for gene transcription of immediate early genes FOS and JUN. In contrast, mechanistic target of rapamycin Complex 1 signalling for translation initiation increased in all muscles subjected to increased tension development (ECC and STIM + IMA  + PAS as well as PAS). CONCLUSIONS: The current study suggests that exercise-induced increases in protein synthesis as well as transcriptional signalling is dependent on the concomitant effect of excitation and tension development, whereas signalling for translation initiation is only dependent of tension development per se.


Assuntos
Contração Muscular , Músculo Esquelético , Animais , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Músculo Esquelético/metabolismo , Biossíntese de Proteínas , Ratos , Transdução de Sinais
8.
Acta Physiol (Oxf) ; 227(3): e13336, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31231946

RESUMO

AIM: mTORC1 is regarded as an important key regulator of protein synthesis and hypertrophy following mechanical stimuli in skeletal muscle. However, as excitation and tension development is tightly coupled in most experimental models, very little and largely indirect evidence exist for such a mechanosensitive pathway. Here, we sought to examine whether activation of mTORC1 signalling is dependent on tension per se in rat skeletal muscle. METHODS: To examine the mechanosensitivity of mTORC1, rat EDL muscles were exposed to either excitation-induced eccentric contractions (ECC), passive stretching (PAS) with identical peak tension (Tpeak ) and Tension-Time-Integral (TTI), or ECC with addition of inhibitors of the myosin ATPases (IMA ). To further explore the relationship between tension and mTORC1 signalling, rat EDL muscles were subjected to PAS of different magnitudes of Tpeak while standardizing TTI and vice versa. RESULTS: PAS and ECC with equal Tpeak and TTI produced similar responses in mTORC1 signalling despite different modes of tension development. When active tension during ECC was nearly abolished by addition of IMA , mTORC1 signalling was reduced to a level comparable to non-stimulated controls. In addition, when muscles were exposed to PAS of varying levels of Tpeak with standardized TTI, activation of mTORC1 signalling displayed a positive relationship with peak tension. CONCLUSIONS: The current study directly links tension per se to activation of mTORC1 signalling, which is independent of an active EC-coupling sequence. Moreover, activation of mTORC1 signalling displays a positive dose-response relationship with peak tension.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Músculo Esquelético/metabolismo , Animais , Fenômenos Biomecânicos , Retículo Endoplasmático , Regulação da Expressão Gênica , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Contração Muscular , Miosinas/antagonistas & inibidores , Miosinas/metabolismo , Ratos , Transdução de Sinais , Sulfonamidas/farmacologia , Tolueno/análogos & derivados , Tolueno/farmacologia
9.
Front Physiol ; 10: 649, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191347

RESUMO

Purpose: High-load resistance exercise contributes to maintenance of muscle mass, muscle protein quality, and contractile function by stimulation of muscle protein synthesis (MPS), hypertrophy, and strength gains. However, high loading may not be feasible in several clinical populations. Low-load blood flow restricted resistance exercise (BFRRE) may provide an alternative approach. However, the long-term protein synthetic response to BFRRE is unknown and the myocellular adaptations to prolonged BFRRE are not well described. Methods: To investigate this, 34 healthy young subjects were randomized to 6 weeks of low-load BFRRE, HLRE, or non-exercise control (CON). Deuterium oxide (D2O) was orally administered throughout the intervention period. Muscle biopsies from m. vastus lateralis were collected before and after the 6-week intervention period to assess long-term myofibrillar MPS and RNA synthesis as well as muscle fiber-type-specific cross-sectional area (CSA), satellite cell content, and myonuclei content. Muscle biopsies were also collected in the immediate hours following single-bout exercise to assess signaling for muscle protein degradation. Isometric and dynamic quadriceps muscle strength was evaluated before and after the intervention. Results: Myofibrillar MPS was higher in BFRRE (1.34%/day, p < 0.01) and HLRE (1.12%/day, p < 0.05) compared to CON (0.96%/day) with no significant differences between exercise groups. Muscle RNA synthesis was higher in BFRRE (0.65%/day, p < 0.001) and HLRE (0.55%/day, p < 0.01) compared to CON (0.38%/day) and both training groups increased RNA content, indicating ribosomal biogenesis in response to exercise. BFRRE and HLRE both activated muscle degradation signaling. Muscle strength increased 6-10% in BFRRE (p < 0.05) and 13-23% in HLRE (p < 0.01). Dynamic muscle strength increased to a greater extent in HLRE (p < 0.05). No changes in type I and type II muscle fiber-type-specific CSA, satellite cell content, or myonuclei content were observed. Conclusions: These results demonstrate that BFRRE increases long-term muscle protein turnover, ribosomal biogenesis, and muscle strength to a similar degree as HLRE. These findings emphasize the potential application of low-load BFRRE to stimulate muscle protein turnover and increase muscle function in clinical populations where high loading is untenable.

10.
Front Physiol ; 9: 1796, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30618808

RESUMO

Purpose: It is well established that high-load resistance exercise (HLRE) can stimulate myofibrillar accretion. Additionally, recent studies suggest that HLRE can also stimulate mitochondrial biogenesis and respiratory function. However, in several clinical situations, the use of resistance exercise with high loading may not constitute a viable approach. Low-load blood flow restricted resistance exercise (BFRRE) has emerged as a time-effective low-load alternative to stimulate myofibrillar accretion. It is unknown if BFRRE can also stimulate mitochondrial biogenesis and respiratory function. If so, BFRRE could provide a feasible strategy to stimulate muscle metabolic health. Methods: To study this, 34 healthy previously untrained individuals (24 ± 3 years) participated in BFRRE, HLRE, or non-exercise control intervention (CON) 3 times per week for 6 weeks. Skeletal muscle biopsies were collected; (1) before and after the 6-week intervention period to assess mitochondrial biogenesis and respiratory function and; (2) during recovery from single-bout exercise to assess myocellular signaling events involved in transcriptional regulation of mitochondrial biogenesis. During the 6-week intervention period, deuterium oxide (D2O) was continuously administered to the participants to label newly synthesized skeletal muscle mitochondrial proteins. Mitochondrial respiratory function was assessed in permeabilized muscle fibers with high-resolution respirometry. Mitochondrial content was assessed with a citrate synthase activity assay. Myocellular signaling was assessed with immunoblotting. Results: Mitochondrial protein synthesis rate was higher with BFRRE (1.19%/day) and HLRE (1.15%/day) compared to CON (0.92%/day) (P < 0.05) but similar between exercise groups. Mitochondrial respiratory function increased to similar degree with both exercise regimens and did not change with CON. For instance, coupled respiration supported by convergent electron flow from complex I and II increased 38% with BFRRE and 24% with HLRE (P < 0.01). Training did not alter citrate synthase activity compared to CON. BFRRE and HLRE elicited similar myocellular signaling responses. Conclusion: These results support recent findings that resistance exercise can stimulate mitochondrial biogenesis and respiratory function to support healthy skeletal muscle and whole-body metabolism. Intriquingly, BFRRE produces similar mitochondrial adaptations at a markedly lower load, which entail great clinical perspective for populations in whom exercise with high loading is untenable.

11.
Front Physiol ; 7: 547, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27909410

RESUMO

Loss of skeletal muscle myofibrillar protein with disease and/or inactivity can severely deteriorate muscle strength and function. Strategies to counteract wasting of muscle myofibrillar protein are therefore desirable and invite for considerations on the potential superiority of specific modes of resistance exercise and/or the adequacy of low load resistance exercise regimens as well as underlying mechanisms. In this regard, delineation of the potentially mechanosensitive molecular mechanisms underlying muscle protein synthesis (MPS), may contribute to an understanding on how differentiated resistance exercise can transduce a mechanical signal into stimulation of muscle accretion. Recent findings suggest specific upstream exercise-induced mechano-sensitive myocellular signaling pathways to converge on mammalian target of rapamycin complex 1 (mTORC1), to influence MPS. This may e.g. implicate mechanical activation of signaling through a diacylglycerol kinase (DGKζ)-phosphatidic acid (PA) axis or implicate integrin deformation to signal through a Focal adhesion kinase (FAK)-Tuberous Sclerosis Complex 2 (TSC2)-Ras homolog enriched in brain (Rheb) axis. Moreover, since initiation of translation is reliant on mRNA, it is also relevant to consider potentially mechanosensitive signaling pathways involved in muscle myofibrillar gene transcription and whether some of these pathways converge with those affecting mTORC1 activation for MPS. In this regard, recent findings suggest how mechanical stress may implicate integrin deformation and/or actin dynamics to signal through a Ras homolog gene family member A protein (RhoA)-striated muscle activator of Rho signaling (STARS) axis or implicate deformation of Notch to affect Bone Morphogenetic Protein (BMP) signaling through a small mother of decapentaplegic (Smad) axis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...